Q1.

What is the percentage atom economy for the formation of sodium nitrate in the reaction between sodium carbonate and nitric acid?

 $Na_2CO_3 + 2 HNO_3 \rightarrow 2 NaNO_3 + H_2O + CO_2$

- **A** 36.6%
- **B** 50.3%
- **C** 57.8%
- **D** 73.3%

(Total 1 mark)

Q2.

The table shows some results from a titration.

Titration	Rough	Titre 1	Titre 2	Titre 3
Initial reading / cm³	0.00	11.30	0.00	8.55
Final reading / cm ³	26.85	37.20	26.20	34.55
Titre volume / cm ³	26.85	25.90	26.20	26.00

What is the correct mean titre?

- **A** 25.95 cm³
- **B** 26.03 cm³
- **C** 26.10 cm³
- **D** 26.24 cm³

Q3.

What is the empirical formula of an oxide of chlorine that contains 42.5% by mass of chlorine?

- A CIO₂
- 0
- B CIO₃
- 0
- C Cl₂O₃
- 0
- **D** Cl₂O₅
- 0

(Total 1 mark)

Q4.

Which of these practical steps will improve the accuracy of a titration?

- **A** Using a 10.0 cm³ pipette instead of a 25.0 cm³ pipette.
- 0
- **B** Rinsing the sides of the conical flask with water.
- 0
- **C** Rinsing the burette with water before filling.
- 0
- **D** Using 6 drops of indicator instead of 3 drops of indicator.
- 0

(Total 1 mark)

Q5.

The equation shows how P reacts with Q to make R and S.

When a mixture of 0.25 mol of $\bf P$ and 0.40 mol of $\bf Q$ react, 0.15 mol of $\bf R$ is obtained.

What is the percentage yield of **R** in this reaction?

A $\frac{0.15}{0.20} \times 100$

B $\frac{0.15}{0.25} \times 100$

0

c $\frac{0.15}{0.40} \times 100$

0

D $\frac{0.15}{0.65} \times 100$

0

Q6.

What is the M_r of this compound?

A 94.0

0

B 96.0

0

C 98.0

0

D 100.0

0

(Total 1 marks)

Q7.

This is the equation for the conversion of 1,2-dibromoethane to butanedinitrile.

$$CH_2BrCH_2Br + 2 KCN \rightarrow NCCH_2CH_2CN + 2 KBr$$

What is the percentage atom economy for the production of butanedinitrile in this reaction?

Relative formula masses, Mr

$$CH_2BrCH_2Br = 187.8$$

$$KCN = 65.1$$

$$NCCH_2CH_2CN = 80.0$$

$$KBr = 119.0$$

A 100%

0

B 40.2%

 $\overline{}$

C 31.6%

D 25.2%

0

Q8.

A sample of cyclohexane contains 3.011×10^{24} atoms of carbon.

What is the mass of this sample?

The Avogadro constant, $L = 6.022 \times 10^{23} \text{ mol}^{-1}$

A 70.0 g

0

B 71.7 g

0

C 420 g

0

D 430 g

0

(Total 1 marks)

Q9.

Compound ${\bf P}$ is converted into compound ${\bf R}$ by a two-stage synthesis via compound ${\bf Q}.$

The yields for the individual steps are:

 $P \rightarrow Q$ 50%

 $\mathbf{Q} \rightarrow \mathbf{R}$ 30%

What is the overall yield of **R** in this synthesis?

A 15%

B 30%

0

C 40%

D 80%

0

Q10.

A student	completes	a titration t	o determin	e the conce	entration of	ethanoic	acid in
vinegar.							

25.0 cm³ of vinegar are transferred to a conical flask using a pipette. A few drops of phenolphthalein are added to the conical flask. Sodium hydroxide solution is added from a burette to the conical flask. The titration is repeated until concordant results are obtained.

Which suggestion improves the accuracy of the titres?

Α	Rinsing the conical flask with vinegar between each titration.	0	
В	Rinsing the conical flask with sodium hydroxide solution between each titration.	0	
С	Rinsing the conical flask with water between each titration.	0	
D	Not rinsing the conical flask between each titration.	0	
			(Total 1 mark)

Q11.

A student completes a titration to determine the concentration of ethanoic acid in vinegar.

25.0 cm³ of vinegar are transferred to a conical flask using a pipette. A few drops of phenolphthalein are added to the conical flask. Sodium hydroxide solution is added from a burette to the conical flask. The titration is repeated until concordant results are obtained.

Which suggestion decreases the percentage uncertainty in the mean titre?

Α	Use a more dilute solution of sodium hydroxide in the burette.	0
В	Use a more dilute solution of vinegar.	0
С	Rinse the inside of the conical flask with distilled water during each titration.	0
D	Rinse the tip of the burette with distilled water near the end point in each titration.	0

Q12.

Which reaction has the highest percentage atom economy for the production of hydrogen?

- **A** LiH + $H_2O \rightarrow LiOH + H_2$
- $\mathbf{B} \quad \mathsf{CO} + \mathsf{H}_2\mathsf{O} \to \mathsf{CO}_2 + \mathsf{H}_2$
- **C** 2 Al + 3 $H_2O \rightarrow Al_2O_3 + 3 H_2$

(Total 1 mark)

Q13.

What is the minimum volume, in dm³, of air needed for the complete combustion of 1 dm³ of methane?

Assume that air contains 20% of oxygen by volume.

Assume that all volumes are measured at the same temperature and pressure.

- **A** 1
- **B** 2
- **C** 5
- **D** 10

(Total 1 mark)

Q14.

What is the atom economy for the formation of ethylamine in this reaction?

$$CH_3CH_2Br + 2 NH_3 \rightarrow CH_3CH_2NH_2 + NH_4Br$$

- **A** 31.5%
- **B** 35.7%
- **C** 36.1%
- **D** 41.3%

Q15.							
What is the relative molecular mass (M_r) of benzene-1,4-dicarboxylic acid?							
Α	164.0	0					
В	166.0	0					
С	168.0	0					
D	170.0	0					
			(Total 1 mark)				
Q16. 5.0 g of an oxide contains 4.0 g of molybdenum.							
Wha	at is the empirical formula of this	oxide?					
Α	MoO ₂	0					
В	MoO ₅	0					
С	Mo_2O_3	0					
D	Mo_3O_2	0					
			(Total 1 mark)				
Q17. Which compound has the same empirical formula and molecular formula?							
Α	butane	0					
В	but-1-ene	0					
С	propane	0					
D	propene	0					
			(Total 1 mark)				